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a b s t r a c t

The scalable growth of wafer-sized single-crystal graphene in an energy-efficient manner and compatible
with wafer process is critical for the killer applications of graphene in high-performance electronics and
optoelectronics. Here, ultrafast epitaxial growth of single-crystal graphene wafers is realized on single-
crystal Cu90Ni10(1 1 1) thin films fabricated by a tailored two-step magnetron sputtering and recrystal-
lization process. The minor nickel (Ni) content greatly enhances the catalytic activity of Cu, rendering
the growth of a 4 in. single-crystal monolayer graphene wafer in 10 min on Cu90Ni10(1 1 1), 50 folds faster
than graphene growth on Cu(1 1 1). Through the carbon isotope labeling experiments, graphene growth
on Cu90Ni10(1 1 1) is proved to be exclusively surface-reaction dominated, which is ascribed to the Cu
surface enrichment in the CuNi alloy, as indicated by element in-depth profile. One of the best benefits
of our protocol is the compatibility with wafer process and excellent scalability. A pilot-scale chemical
vapor deposition (CVD) system is designed and built for the mass production of single-crystal graphene
wafers, with productivity of 25 pieces in one process cycle. Furthermore, we demonstrate the application
of single-crystal graphene in electrically controlled liquid-crystal microlens arrays (LCMLA), which exhi-
bit highly tunable focal lengths near 2 mm under small driving voltages. By integration of the graphene
based LCMLA and a CMOS sensor, a prototype camera is proposed that is available for simultaneous light-
field and light intensity imaging. The single-crystal graphene wafers could hold great promising for high-
performance electronics and optoelectronics that are compatible with wafer process.

� 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction ous applications, such as high-performance electronics [1], photon-
Graphene shows a combination of unique properties, including
ultrahigh electrical mobility, extraordinary thermal conductivity,
and outstanding mechanical strength, making it attractive to vari-
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ics/optoelectronics [2], and protective coatings [3]. The controlled
fabrication of large-area and high-quality graphene films has been
the Achilles’ Heel for those promising applications [3]. Chemical
vapor deposition (CVD) is considered an efficient method of gra-
phene production due to its excellent controllability and scalability
[4–7]. However, ubiquitous structural imperfections, e.g., grain
boundaries [8], point defects [9], contaminants [10], and wrinkles
ess. All rights reserved.
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[11,12], counteract the superior properties of the CVD-grown gra-
phene samples compared to exfoliated ones [7]. The controlled
growth of large-size single-crystal graphene has been a continuous
pursuit in graphene community.

Both single-nucleation and multi-nucleation approaches have
been employed for single-crystal graphene growth [13]. For the
single-nucleation approach, reducing the nucleation density is crit-
ical and to some extent realized by passivating active sites of Cu sur-
face [14–16], locally feeding carbon sources [17,18], self-selection of
the fastest-growing domain [19], etc. Moreover, great efforts have
been made to promoting the growth rate, including enhancing cat-
alytic ability of Cuby surfaceoxygen [14,20], accelerating themolec-
ular collision [20,21], using substrates with high catalytic ability
[17,19]. The state-of-art sizes of single-crystal graphene vary from
millimeter to decimeter with growth time from several minutes to
days [14,15,17,19–25]. In contrast, the multi-nucleation approach
relies on appropriate substrates enabling the epitaxial graphene
domains with identical orientation, which then coalesce seamlessly
into a single-crystal-like film. This has been demonstrated on sub-
strates such as h-BN [26], Ge(1 1 0) [27,28], and Cu(1 1 1) [29–32].
In comparison, the multi-nuclear approach permits abundant
growth frontiers; hence, the growth rate is much faster, meaningful
for the scalable and efficient production of graphene.

Very recently, the epitaxial growth of graphene on a Cu(1 1 1)
substrate has received much attention, especially due to the
large-size single-crystal Cu(1 1 1) foil is available by methods
including temperature-driven annealing technique [32] and colos-
sal grain growth [33]. However, there are still some problems
remaining to be solved. First, the graphene orientation has not
been totally controlled, with minor misorientation angles varying
from 0� to 30� [30,34–36]. This deviation was ascribed to the
growth temperature [36], Cu surface roughness [37], and surface
impurity [30]. Second, the growth rate of graphene on Cu(1 1 1)
substrates is relatively slow, because Cu(1 1 1) is a crystal face with
low catalytic ability for hydrocarbon decomposition [38]. Third, the
Cu(1 1 1) foil as a growth substrate is not compatible with wafer
technology, which is detrimental to the integration of graphene
with wafer process. Hence, designing a substrate with higher cat-
alytic ability, better surface state (purity, cleanness, flatness, etc.)
[39], and compatible with wafer processing is significant for the
scalable production of single-crystal graphene and its application
in electronics and optoelectronics.

Herein, we report the ultrafast epitaxial growth of single-crystal
graphene on Cu90Ni10(1 1 1) thin films. Wafer-scale single-crystal
Cu90Ni10(1 1 1) thin films on sapphire are fabricated by a tailored
two-step sputtering process. The Cu90Ni10(1 1 1) thin film is ultra-
pure and ultraflat, contributing to the growth of highly-oriented
graphene. The growth rate of graphene on Cu90Ni10(1 1 1) is �50
times larger than that on Cu(1 1 1), enabling the 4 in. single-
crystal graphene growth within 10 min. We designed a pilot-scale
CVD system that is suitable for the scalable growth of single-
crystal graphene wafers up to 25 pieces in a process cycle. The mass
produced graphene wafers show good uniformity. Moreover, we
demonstrate the application of single-crystal graphene in liquid-
crystal microlens arrays (LCMLA) with simplified device structure,
where graphene is functioned as both the transparent electrode
and alignment layer. The graphene base LCMLA exhibits highly tun-
able focal lengths up to 2 mm under small driving voltages.
2. Experimental

2.1. Fabrication of single-crystal CuNi(1 1 1) thin film

Single-crystal sapphires (4 in., c-plane with miscut <0.5�,
600 lm thickness, epi-ready with average roughness of Ra
< 0.2 nm) were used. Before deposition, the sapphire substrate
was annealed at 1,050 �C for 4 h in pure oxygen atmosphere. For
the two-step method to fabricate the twin-free single-crystal
CuNi(1 1 1) thin film, the Cu thin film was firstly deposited on sap-
phire substrate by radio frequency (RF) sputtering technique using
a physical vapor deposition (PVD) equipment (Sputter film, SF2). A
RF power of 500 Wwas applied to deposit Cu thin film at the depo-
sition rate of 0.2 nm s�1, with the basal pressure of 5.32 � 10�2 Pa.
A �450 nm-thick Cu thin film was obtained after 30 min deposi-
tion. The Cu/sapphire was then annealed at 1,000 �C with 500 sccm
Ar and 10 sccm H2 at AP using a tube furnace (Thermal Scientific)
for 1 h to increase the crystallinity of Cu thin film. Then, a 50 nm-
thick Ni thin film was deposited on the single-crystal Cu(1 1 1)/
sapphire. The Ni/Cu(1 1 1)/sapphire was alloyed at 1,000 �C with
500 sccm Ar and 10 sccm H2 at AP for 1 h. For the one-step sputter-
ing method, Cu thin film and Ni thin film were subsequently
deposited onto the sapphire substrate in one batch to form the
Ni/Cu/sapphire layered structure. Then, the same annealing pro-
cess was carried out to increase the crystallinity.

2.2. Growth of graphene

For growth of single-crystal graphene, the CuNi(1 1 1) thin film
was heated to 1,000 �C with 500 sccm Ar and 10 sccm H2 at AP,
then 10 sccm CH4 (0.1% diluted in Ar) was introduced for graphene
growth. The graphene grown on Cu(1 1 1) thin film was under the
same condition. After growth, CH4 gas flow was switched off and
the sample was cooling down to room temperature. For the isotope
labeling experiments, 13CH4 (0.1% diluted in Ar) and 12CH4 (0.1%
diluted in Ar) were used.

2.3. Transfer of graphene

A thin film of poly(methyl methacrylate) (PMMA, 4 wt% in ani-
sole, 2,000 r min�1 for 1 min) was spin-coated onto the graphene/
CuNi(1 1 1). The etching of CuNi(1 1 1) is somewhat time
consuming, and it usually takes 1 d to finish the etching. Then,
the PMMA/graphene/CuNi(1 1 1) thin film was put into a 1 mol/L
ammonium persulfate ((NH4)2S2O8) aqueous solution. After etch-
ing, the PMMA/graphene was rinsed in DI water for several times.
The PMMA/graphene was dried in a desiccator, and then placed on
the SiO2/Si substrate. The PMMA layer was dissolved by hot
acetone.

2.4. Characterization

2.4.1. Optical measurement
Bright-field and dark-field optical microscopy (OM) were con-

ducted on Nikon, Olympus LV100ND. To measure the Raman spec-
tra of graphene transferred onto SiO2/Si substrate, a Witec Raman
system (alpha RSA300+) with 488 nm laser was used with laser
spot size of 1 lm. The spatial resolution is 500 nm and the step size
is 320 nm. A 100� objective and a 600 lines/mm grating (spectral
resolution was about 3 cm�1) were used to collect Raman signals.
WLI was conducted using a Nikon White Light Interferometry
(BW-M7000).

2.4.2. UV-Ozone oxidation
Graphene/CuNi(1 1 1) thin film and graphene/Cu foil were

placed into the chamber of a UV ozone cleaner (NOVASCAN
PSD-UV4) equipped with a low-pressure Hg lamp. Humidity was
controlled to about 40% by introducing water vapor via a water
bubbler. The graphene samples were irradiated with ultraviolet
light for 10 min and observed using an OM to visualize the grain
boundaries.
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2.4.3. XRD characterization
A Panalytical X-pert system (Materials Research Diffractometer)

with Cu Ka radiation source was employed. Different geometrical
set-ups of the instrument were used depending on scanning proce-
dure. Monochromator and Ni 0.125 mm automatic beam attenua-
tor and a 0.18� parallel plate collimator diffracted optics were
used. The high resolution mode enables the angle resolution of
0.001�.

2.4.4. SEM and EBSD measurement
Scanning electron microscopy (SEM) images were obtained on a

Hitachi S4800 field-emission scanning electron microscope. Elec-
tron backscatter diffraction (EBSD) measurements were carried
out on ULVAC-PHI (PHI 710) Auger system equipped with the EBSD
probe (EDAX, DigView). EBSD test was operated at 10 kV voltage
and 10 nA current. The spot size was 20 nm and the angular reso-
lution was of the order of 0.1�, which allow the quantification of
the misorientation between subgrains or twins and its correlation
with the local microstructure.

2.4.5. AFM measurement
Atomic force microscopy (AFM) morphology image was carried

out on a Bruker Dimension Icon with a Nanoscope V controller
using the tapping mode.

2.4.6. LEED measurement
Low energy electron diffraction (LEED) was performed using

Omicron LEED system in ultrahigh vacuum with base pressure
below 3 � 10�7 Pa.

2.4.7. TEM measurement
Graphene was transferred onto an Au grid using the polymer-

free transfer method. The high-resolution TEM (HRTEM) and
selected area electron diffraction (SAED) were performed on an
FEI Titan cubed with a Cs corrector for the objective lens. The elec-
tron acceleration voltage was 80 kV.

2.4.8. XPS measurement
X-ray photoelectron spectroscopy (XPS) was conducted on the

XPS Kratos Axis Ultra-DLD spectrophotometer with monochro-
matic Al X-ray at pressure of 5 � 10�9 to 1 � 10�8 Torr.

2.4.9. ToF-SIMS analysis
Time-of-flight secondary ion mass spectrometry (ToF-SIMS)

measurements were carried out with a TOF-SIMS V (ION-TOF
GmbH, Munster, Germany) instrument. A bismuth liquid-metal
ion source and a Cs+ ion beamwere equipped for analysis and sput-
tering, respectively. A 3 keV-Cs+ beam scanning over typically an
area of 350 lm � 350 lmwith a current of 30 nA was used to sput-
ter through the CuNi(1 1 1) or graphene/CuNi(1 1 1). Ion images
were taken using 25 keV-Bi+ primary ion over an area of
100 lm � 100 lm at the center of Cs sputtering with 128 � 128
raster pixel sizes. The whole depth profiling process was run in
the interlaced mode, consisting of cycles of short pulses of Bi+ fol-
lowed by a long period of Cs+ sputtering. The vacuum during the
analysis was about 1.5 � 10�9 mbar.

2.5. Fabrication of the single-crystal graphene LCMLA (SCGLCMLA)
device

Single-crystal graphene was transferred onto 500-lm-thick sil-
ica substrates as the bottom electrode. A hole-patterned indium tin
oxide (ITO) coated silica was used as the top electrode. The pattern
shape in the electrode is an array of circular holes with a diameters
of 128 lm and a center-to-center space of 160 lm, which was fab-
ricated by photolithography and wet etching. The graphene silica is
adhered to the hole-patterned ITO silica using an adhesive along
the device edges. The adhesive was mixed with a number of glass
microspheres with 20-lm diameters to form an inner microcavity.
Then, the microcavities were fully filled with twisted nematic LC
materials (Merck E44: no = 1.5277 and ne = 1.7904). Finally, the
device was interconnected using conductive paints and tapes.
2.6. Focusing and imaging test of the SCGLCMLA device

The focusing characters and point spread functions (PSFs) were
acquired by a beam analyzer of WinCamD of DataRay, Inc. The col-
limated beams emitting from the laser source (central wavelength:
671 nm, Changchun New Industries Optoelectronics Tech. Co., Ltd.)
were normalized to the sample through a polarizer working in the
visible regime. Converging patterns were collected using a micro-
scope objective of �40 and 0.65 numerical aperture on a Laser
Beam Profiler coupled to the SCGLCMLA. The SCGLCMLA device
was driven by a tunable AC voltage signal of 1 kHz square wave.
To test the imaging capability, the SCGLCMLA was integrated on
the CMOS sensor of MVC14KSAC-GE6-NOO of Microview, using a
main lens (M3520-MPW2) with focal length of 35 mm. The size
of CMOS sensor is 4384 � 3288 with a pixel pitch of 1.4 lm. The
intensity and light field images were obtained by adjusting the
driving voltages applied on the SCGLCMLA.
3. Results and discussion

Several groups have reported the hetero-epitaxy of
(1 1 1)-oriented CuNi thin films on a-Al2O3(0001) (sapphire) sub-
strates [35,40,41]. However, similar to the case of Cu epitaxy on
sapphire [36,42–44], dense in-plane twin structures and grooves
in the CuNi thin films are difficult to eliminate and degrade the sur-
face flatness. Here, a two-step magnetron sputtering approach is
proposed to essentially prevent the twin formation in Cu90-
Ni10(1 1 1) thin films (Fig. 1a). In the first step, the single-crystal
Cu(1 1 1) thin film with least twin structures was fabricated on
sapphire according to the method we described before [45]. Briefly,
the sapphire substrate was firstly annealed in oxygen to release the
inner stress accumulated during the manufacturing process, and to
optimize the surface termination. A 450-nm Cu film was then
deposited onto sapphire by magnetron sputtering. Single-crystal
Cu(1 1 1) thin films without twin were obtained after high-
temperature recrystallization (Fig. S1a–c online). In the second
step, 50-nm Ni was deposited on the Cu(1 1 1)/sapphire
(Fig. S1d–f online). The as-deposited Ni is with twins due to the dif-
ferent stack of Ni of Cu, that is ABC stack and ACB stack, is energet-
ically the same (Fig. 1a, inset). In the third step, the Ni/Cu(1 1 1)
was annealed in Ar/H2 at high temperature, where the Ni domains
with 60� misorientations diffused into the single-crystal Cu(1 1 1)
matrix and register with the Cu(1 1 1) to form the single-crystal
Cu90Ni10(1 1 1) alloy.

Fig. 1b shows a wafer-scale Cu90Ni10 film with mirror-like sur-
face. The surface is very flat with root-mean-square (RMS) rough-
ness of �0.50 nm in the image region of 25 lm2, as characterized
by AFM (Fig. 1c). According to the optical profile measured by
white light interferometry (WLI), the surface flatness of CuNi film
in a large area is much better than that of Cu film (Fig. S2 online),
which can be ascribed to the inhibited sublimation due to the
minor content of Ni. Note that CuNi(1 1 1) thin film is much more
flat than Cu(1 1 1) foils with high-density and rough rolling lines
formed during the manufacturing process [30,46].

EBSD and X-ray diffraction (XRD) were carried out to investi-
gate the polar and azimuthal mosaicity of the CuNi thin film. The
uniform blue contrast of the EBSD image proves that the out-of-
plane orientation is (1 1 1) (Fig. 1d). The pole figure (inset in



Fig. 1. Fabrication of single-crystal Cu90Ni10(1 1 1) thin films. (a) Schematic of the two-step sputtering method. Inset shows the top view and side view of the Ni with twin
boundary. (b) Photograph of a 4 in. CuNi(1 1 1) thin film on sapphire. (c) AFM image of the CuNi(1 1 1) thin film. (d) EBSD image of the CuNi(1 1 1) thin film. Inset shows the
pole figure of the same region. (e) XRD patterns of as-deposited Ni/Cu(1 1 1)/sapphire and CuNi(1 1 1)/sapphire after alloying. (f) w scan of Cu(1 1 1), Ni/Cu(1 1 1), and CuNi
(1 1 1) thin films.
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Fig. 1d) shows three evenly distributed points, indicating the single
azimuthal orientation without in-plane twinning. XRD was then
used to track the evolution of mosaicity in a large area. The h/2h
scan shows that the as-deposited Ni on Cu(1 1 1)/sapphire is
(1 1 1)-dominated (Fig. 1e). After annealing, only one peak is pre-
sent between the peak positions of Cu(1 1 1) and Ni(1 1 1), indicat-
ing the formation of CuNi(1 1 1) alloy. We then chose M(2 0 0)
(M = Cu, Ni, Cu90Ni10) and Al2O3(02–24) as Bragg positions and per-
formed an azimuthal scan (u) by rotating the sample normal to
surface using high-resolution XRD (HRXRD). As shown in Fig. 1f,
three diffraction peaks at the interval of 120� appear for the Cu
(1 1 1) thin film, while the as-deposited Ni thin film showed six
peaks at the interval of 60�, indicating the existence of the in-
plane twin structures in as-deposited Ni film. Remarkably, after
annealing, the CuNi(1 1 1) film exhibits three evenly distributed
peaks with narrow full width at half-maximum (fwhm). All those
observations prove the excellent single crystalline nature of the
CuNi(1 1 1) thin film.

The tailored two-step magnetron sputtering approach is the key
to fabricate the high-quality single-crystal CuNi(1 1 1) thin films.
In the controlled experiment, one-step sputtering approach was
employed to deposit the CuNi thin films [40]. Cu and Ni layers were
subsequently deposited onto the sapphire substrates, followed by
annealing at high temperature to form the alloy (Fig. S3a online).
The morphology characterized by SEM and AFM shows abundant
grain boundaries with deep thermal grooves (Fig. S3b–d online).
HRXRD and EBSD also proved the ubiquitous twin structures in
the CuNi(1 1 1) thin film fabricated by the one-step sputtering
approach (Fig. S3e–g online).

Graphene was grown on the Cu90Ni10(1 1 1) thin film using
atmospheric pressure CVD (APCVD). The graphene domains grown
on Cu90Ni10(1 1 1) thin films were hexagonal and well aligned
(Figs. 2a and S4 (online)), which then coalesced into a continuous
monolayer by elongating the growth time (Fig. 2a). Graphene
was also grown on Cu(1 1 1) thin films under the same conditions
(Fig. S5 online). The growth of fully covered graphene on a 4 in.
CuNi(1 1 1) costs only 10 min, corresponding to the growth rate
of 1 cm/min, 10 times faster than that of Cu(1 1 1) (Fig. 2b). In
addition, the growth rate of a single domain on CuNi(1 1 1) thin
films reaches 50 lm/min, comparable with previous reported



Fig. 2. Ultrafast epitaxial growth of single-crystal graphene wafer on Cu90Ni10(1 1 1). (a) SEM images of graphene grown on CuNi(1 1 1) with different growth time. (b)
Coverage of graphene grown on Cu(1 1 1) and CuNi(1 1 1). (c) Domain size of graphene grown on Cu(1 1 1) and CuNi(1 1 1). (d) Statistic of orientation distribution of graphene
grown on CuNi(1 1 1). Inset is a SEM image of graphene with 0� (red arrow) and 30� (blue arrow) orientation. (e,f) LEED patterns of graphene grown on CuNi(1 1 1). LEED
pattern of graphene (e) under lower electron energy. LEED pattern of CuNi(1 1 1) (f) under higher electron energy. (g) Atomic-resolution HRTEM image of graphene.
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values on a CuNi foil [17,47], and 50 times larger than that on
Cu(1 1 1) thin film (�1 lm/min) (Fig. 2c). The difference in growth
rate between coverage and single domain originates from
the reduced nucleation density of graphene on the CuNi(1 1 1)
alloy [47].

Multi-scale characterizations were conducted to verify the ori-
entation of graphene grown on CuNi(1 1 1). First, we checked the
orientation of graphene domains using SEM based on the common
view that graphene domains are terminated by zigzag edge under
high H2/CH4 ration (=1,000:1 in our experimental condition). The
percentage of aligned graphene domains is larger than 98%
(Fig. 2d) according to over 1000 graphene domains. The remaining
domains have the misorientation angle of exclusively �30�, consis-
tent with theoretical calculation that the orientation angle of 30�
with regards to Cu[1 1 0] is the second stable state on Cu(1 1 1)
[48]. It is worth noting that no other misorientation angles was
observed. The high purity and high surface flatness of CuNi(1 1 1)
may contribute to preventing the random nucleation usually pre-
sent in Cu(1 1 1) or CuNi(1 1 1) foils [30]. In addition, the twin
boundaries of CuNi(1 1 1) (made by one-step sputtering method)
can degenerate the orientation and shape of graphene domains
(Fig. S6 online). Then, LEED was used to characterize the lattice
structure and orientation of graphene/CuNi(1 1 1). Only one pat-
tern was observed for the graphene layer, indicating the single
crystalline nature (Fig. 2e). Moreover, the LEED pattern of graphene
are of the same direction with underlying Cu90Ni10(1 1 1) (Fig. 2f),
demonstrating the epitaxial graphene growth. Furthermore, we
transferred the continuous graphene film onto TEM grids and car-
ried out TEM and SAED characterization. Over 50 diffraction pat-
terns were randomly collected on graphene transferred onto a
TEM grid (with diameter of �3 mm), which were exactly identical
(Fig. S7 online).

The stitching of multiple graphene islands grown on CuNi(1 1 1)
were investigated in detail. Graphene grain boundaries can be
directly visualized using OM imaging after exposure to UV irradia-
tion [49]. Grain boundary lines were clearly present at the stitching
regions of two misaligned graphene islands grown on polycrys-
talline Cu foils; in contrast, the graphene/CuNi(1 1 1) withstand
the harsh environment and showed no obvious contrast (Fig. S8
online). Raman spectroscopy was employed to identify defects in
graphene lattice. The ID/IG map showed no defect at the stitching
frontier of two aligned graphene islands (Fig. S9a online). The
I2D/IG band ratio was �4 and uniform across the two domains. Both
indicated the single-crystal and monolayer feature of graphene. As
a comparison, a defect line can be visualized at the stitching region
of misaligned graphene domains (Fig. S9b online) [50]. The seam-
less stitching of graphene domains grown on CuNi(1 1 1) was fur-
ther confirmed by HRTEM (Fig. S10 online). The atomic-resolution
image shows the perfect hexagonal lattice of monolayer graphene,
demonstrating its high quality and free of defect (Fig. 2g).

The strict monolayer (without any adlayer) and ultrafast
growth features inspire us to explore the growth mechanism of
graphene on Cu90Ni10(1 1 1) thin films. As we know, the growth
of graphene obeys the surface-reaction mediated regime on Cu
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and the segregation regime on Ni. To clarify the growth mechanism
of graphene on Cu90Ni10(1 1 1), carbon isotope labeling experi-
ments were performed. Raman spectroscopy was used to visualize
the carbon supply, where the Raman 2D band at �2,700 cm�1 rep-
resents the signal from 12C-derived graphene, while �2,600 cm�1

from 13C-derived graphene (Fig. S11 online) [51]. 12CH4 was first
introduced to initiate the nucleation and growth of graphene for
1 min; then, carbon source was switched to 13CH4 for the other
1 min, followed by fast moving growth substrate out to cold zone
of CVD system to break off the growth. For comparison, similar
procedure was applied to the graphene growth on Cu(1 1 1) with
subsequent supply of 12CH4 and 13CH4 for both 15 min. Graphene
films were transferred onto SiO2/Si substrates where Raman map
was conducted (Fig. 3a, b). The shape of graphene grown on Cu
(1 1 1) is more compact and regular than that on CuNi(1 1 1),
which can be ascribed to the different growth regime of graphene
on Cu(1 1 1) and CuNi(1 1 1). The growth rate of graphene on CuNi
(1 1 1) is much faster than that on Cu(1 1 1). Hence, the graphene
growth on Cu(1 1 1) is attachment-limited, and graphene growth
o CuNi(1 1 1) is diffusion-limited. For graphene synthesized on
CuNi(1 1 1), the transition from pure 12C to 13C region was very
sharp, identical to that of graphene synthesized on Cu(1 1 1)
(Fig. 3c). Moreover, the Raman spectrum at the transition region
Fig. 3. Mechanism of graphene growth on Cu90Ni10(1 1 1) thin film. (a) Raman 2D band p
map of a graphene domain grown on CuNi(1 1 1). (c) 2D band position profile of graphen
(b). (d) Raman spectrum of the red point in (b). Inset shows the sharp boundary of 12C-gr
measured by ToF-SIMS. (f) 3D carbon element map of graphene/CuNi(1 1 1). (g) Propose
showed the coexistence of two pure bands from 13C and 12C
(Fig. 3d), clearly confirming no mixture of 13C and 12C during
growth (inset in Fig. 3d). Hence, we conclude that graphene grown
on Cu90Ni10(1 1 1) thin films is surface-reaction dominated and
without segregation [17].

To interrupt the growth regime, XPS was conducted to investi-
gate the surface element distribution of the CuNi alloy. Element
depth profile of the CuNi thin film shows that the content of Ni
and Cu were constant in the bulk, while Cu enrichment on the sur-
face was observed (Fig. S12 online). Specifically, the surface con-
centration of Ni was �6%, while the bulk content was �10%. This
phenomenon may be ascribed to the Cu surface segregation since
Cu has a lower heat of sublimation than Ni [52]. The low concen-
tration of Ni on the surface accounts for the surface-reaction medi-
ated growth [17]. More importantly, we found that the elements
ratio (both in-bulk and on-surface) did not vary with annealing
time at high temperature (Fig. S13 online), which is meaningful
for the reuse of CuNi(1 1 1) substrate.

In order to further investigate the C distribution of CuNi(1 1 1)
after graphene growth, ToF-SIMS was conducted owing to its
excellent sensitivity and atomic layer resolution in depth [17].
Before graphene growth, C concentration is negligible (Fig. S14a–
c online). After the fully covered graphene growth, the depth pro-
osition map of a graphene domain grown on Cu(1 1 1). (b) Raman 2D band position
e grown on Cu(1 1 1) along the black line in (a) and CuNi(1 1 1) along the red line in
aphene and 13-graphene. (e) In-depth element distribution of graphene/CuNi(1 1 1)
d growth mechanism of graphene on Cu90Ni10(1 1 1).
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files of Cu, Ni, and C were collected (Figs. 3e and S14d, f (online)).
The peak of Cu and the valley of Ni near the surface also proved the
Cu enrichment on the surface of the CuNi alloy. The C concentra-
tion drop rapidly from surface to bulk, indicating that the C con-
centration was far from thermal equilibrium and not saturated in
the bulk. The 3D carbon map of the graphene/CuNi showed that
the signals concentrated on the surface, which were derived from
the graphene monolayer (Fig. 3f).

Based on these observation, we proposed the growth mecha-
nism of graphene on CuNi(1 1 1), as schematically shown in
Fig. 3g. The carbon concentration (conc.) is negligible on the as
deposited Ni/Cu(1 1 1). During annealing, the Cu diffusion exceeds
the Ni diffusion, resulting in the surface enrichment of Cu. Ni accel-
erates the decomposition of methane on the surface of CuNi alloy
to form carbon radicals. Some reactive carbon radicals diffuse on
the surface to initiate the nucleation and growth of graphene.
Some carbon radicals diffuse into the bulk of CuNi alloy since the
Ni has relatively high carbon solubility. However, the diffusion of
Fig. 4. Scalable growth of single-crystal graphene wafers. (a) A pilot-scale APCVD furnace
CuNi(1 1 1) wafer for graphene growth in a process cycle. (c) Scheme of the gas flow and
distribution with multiple gas nozzles (d) and single gas nozzle (e). (f) Raman spectra of g
of a graphene/CuNi(1 1 1) wafer. (h) Raman spectra of graphene grown on a CuNi(1 1 1)
bulk carbon onto the surface is blocked because the surface is Cu
rich. Hence, the graphene grown on the Cu90Ni10(1 1 1) obeys the
surface reaction regime and is an exact monolayer.

One of the major benefits of the growth of single-crystal gra-
phene wafers on CuNi(1 1 1) thin films is the compatibility with
wafer process. Here, we designed and built a pilot-scale APCVD
system for scalable growth of the graphene wafers (Fig. 4a). The
highly automatically controlled furnace is mainly composed of a
resistance heating unit (heater), a sealed chamber (SiC tube with
diameter of 30 cm), and a quartz stage for loading CuNi wafers.
25 pieces of 4 in. CuNi wafers were loaded for graphene growth
in a process cycle (Fig. 4b). Recent experiment [53] and theoretical
calculation [54] suggest that gas-phase dynamics plays an impor-
tant role in graphene growth, including the uniformity, thickness,
and growth rate. For the mass production of graphene, uniform
gas flow and thermal field are of special significance. To improve
the uniformity of gas flow, the CVD chamber is designed with mul-
tiple gas inlet nozzles with diameter of �1 cm, and the distance
for scalable growth of single-crystal graphene wafers on CuNi(1 1 1). (b) 25 pieces of
architecture of CuNi wafers inside the chamber. Simulation of the gas flow velocity
raphene grown on 25 pieces of CuNi(1 1 1) wafers in a process cycle. (g) Photograph
wafer at varied positions in (g).
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between the CuNi wafers is �1 cm, as schematically shown in
Fig. 4c. We then performed a computational fluid dynamic simula-
tion on gas-dynamics of the vertical CVD chamber based on finite
element method (FEM). In the case of multiple gas inlet nozzles,
the velocity of gas flow becomes uniform quickly and keeps stable
across the whole chamber (Fig. 4d). In striking contrast, in the case
of single gas-inlet hole, the gas flow is turbulent and nonuniform
above and below the wafers, which would hinder the stable
growth of graphene (Fig. 4e).

We then carefully optimized the growth condition of single-
crystal graphene on CuNi(1 1 1) wafers using the pilot-scale equip-
ment, including gas flow, gas ratio, temperature, etc. The quality
and uniformity of graphene within a wafer and among the 25
wafers were evaluated. The Raman spectra of single-crystal gra-
phene films grown on 25 pieces of CuNi(1 1 1) wafers in a process
cycle were shown in Fig. 4f. No obvious D peak is visualized for all
the graphene wafers, indicating the high quality. We then charac-
terized the quality of graphene along the diameter of a single-
crystal graphene wafer grown on CuNi(1 1 1) (Fig. 4g, h). There is
also no observation of any defect peak, demonstrating the high
uniformity among the whole wafer. Single-crystal graphene wafers
were also transferred onto SiO2/Si substrates. The optical micro-
scopy (OM) images and Raman spectra of graphene along the
diameter of a wafer and among 25 pieces of wafers demonstrated
the high-quality and uniform monolayer feature (Fig. S15 online).
Fig. 5. Liquid-crystal microlens arrays based on single-crystal graphene wafer. (a) Schem
imaging sensor arrays. The black dash line indicates the equivalent reflective index distri
LC device; fM, the focal length; the two principle refractive indices are n0 and ne respe
SCGLCMLA device. (d) PSFs of a number of microlens. The intensity is normalized. (e) PS
length and the driving voltage. Inset, the focused PSF and intensity line profile of a micro
an acquired light field image (right). (h) Schematic of the prototype camera working in
These observations prove that the pilot-scale CVD equipment and
the optimized growth protocols exhibit decent yield rate of gra-
phene, which is critical for quality control of scalable production.

Single-crystal graphene exhibits lots of merits compared to the
polycrystalline counterpart, including higher mobility, higher con-
ductivity, and identical lattice orientation. These properties render
the single-crystal graphene wafer very promising in liquid crystal
(LC) optoelectronics [55,56], considering that graphene plane can
induce ordered packing of LC [30,57] and be an excellent transpar-
ent conductive layer [58,59]. Here, we demonstrated the applica-
tion of single-crystal graphene in LCMLA. Microlen arrays are
widely used in phenoptic camera to acquire the position and direc-
tion of irradiance of a scene by inserting the microlens arrays
between the main lens and photography sensor [60,61]. Recently,
the light field camera based on LCMLA with tunable focal length
has been proposed to extend the depth of field and improve the
functionality [62–65].

The device structure of SCGLCMLA is shown in Fig. 5a. Nematic
liquid crystals were sealed into the microcavity gapped by a single-
crystal graphene (SCG) coated silica and a patterned ITO coated sil-
ica. The LC layer was directly oriented by the SCG; hence, an align-
ment layer such as polyimide film is not necessary [63,66], which
greatly simplified the device structure and fabrication process.
Coupled with an imaging sensor, the SCGLCMLA can be used as a
lens with electrically tunable focal length (Fig. 5b). In the on state
atic of the SCGLCMLA device. (b) Schematic of the SCGLCMLA device coupled with
bution profile of the single microlen under a driving voltage. dLC, the thickness of the
ctively; the refractive index for extraordinary waves is neff. (c) Photograph of the
Fs of a microlen under different driving voltages. (f) Relationship between the focal
len. (g) Schematic of the prototype camera working in the light field mode (left) and
conventional mode (left) and an acquired intensity image (right).
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of the SCGLCMLA, when an external voltage is applied on the LC
cell, the LC molecules between two planar electrodes will be rear-
ranged along the electric field direction; as a result, the incident
light will be focused on the sensor array. In the off state, when
external voltage is absence, the SCGLCMLA can be referred as a
phase retarder (PR). The photograph of a SCGLCMLA device with
functional area of 2 cm � 2 cm was shown in Fig. 5c. The device
is highly transparent, critical to prevent the loss of light intensity.

The focusing characters and PSFs were acquired using a Stan-
dard Beam Profiling Camera (WinCamD of DataRay, Inc.). The opti-
cal measurement system for analyzing and evaluating the
SCGLCMLA is shown in Fig. S16 (online). The similar PSFs of a num-
ber of microlens over a large area showed the high uniformity of
the device (Fig. 5d). By varying the driving voltages, the optical pat-
terns along the optical axis of an individual microlen were acquired
(Fig. 5e). The focus is a small circular spot with a very sharp PSF at
the driving voltage of 13.4 V, indicating that the focal length at the
specific voltage is �1 mm, the sum of the thickness of the silica
substrate plus the distance between the SCGLCMLA and the lens
of the microscope. The focal length can be continuously tuned by
varying the driving voltage (Fig. 5f), ranging from �2.5 to
�0.75 mm under a small voltage variation between �7 and �17 V.

Then, the imaging functionality of the SCGLCMLAwas tested by a
prototype camera that integrate the electro-optical device with a
CMOS sensor. The significant capability of the prototype camera is
that it can be used to obtain the light-field and intensity images
simultaneously. When driving voltages were applied on the
SCGLCMLA, a gradient refractive index that corresponded to the
rearrangement of LC molecules under the microholes pattern was
formed (Fig. 5g, left). In this scenario, the light field information
canbe remappedon the image sensor (Fig. 5g, right). Comparedwith
the conventional camera, the depth-of-field of phenoptic camera
was extended through the electrically tunable focal length. Hence,
with further computation process, the digital refocusing image, per-
spective shift image, depthmap, and three-dimensional reconstruc-
tion can be obtained. When the voltage signal applied on the
SCGLCMLA was absence, SCGLCMLA represented a phase retarder
and the prototype became a conventional camera (Fig. 5h, left). In
this scenario, the intensity image of ‘‘PKU” can be recorded
(Fig. 5h, right). The implementation of the single-crystal graphene
based LCMLAs represent an excellent example for its application in
optoelectronics that is compatible with CMOS technology.
4. Conclusion

In summary, for the first time, wafer-size single-crystal Cu90-
Ni10(1 1 1) thin films were fabricated on sapphire through a tai-
lored two-step magnetron sputtering process. Ultrafast epitaxial
growth of single-crystal graphene wafers was realized on the
CuNi(1 1 1) thin film, with growth rate 50 times larger than that
on Cu(1 1 1). The cost-efficient and wafer process compatible
growth method holds great promise for mass production of high-
quality graphene films, as demonstrated by a pilot-scale CVD sys-
tem for the scalable growth of single-crystal graphene wafers,
which will greatly accelerate the high-end application of graphene
in electronics and optoelectronics.
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